Tree Model Optimization Criterion without Using Prediction Error

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint optimization on decoding graphs using minimum classification error criterion

Motivated by the inherent correlation between the speech features and their lexical words, we propose in this paper a new framework for learning the parameters of the corresponding acoustic and language models jointly. The proposed framework is based on discriminative training of the models’ parameters using minimum classification error criterion. To verify the effectiveness of the proposed fra...

متن کامل

RTDGPS Implementation by Online Prediction of GPS Position Components Error Using GA-ANN Model

If both Reference Station (RS) and navigational device in Differential Global Positioning System (DGPS) receive signals from the same satellite, RS Position Components Error (RPCE) can be used to compensate for navigational device error. This research used hybrid method for RPCE prediction which was collected by a low-cost GPS receiver. It is a combination of Genetic Algorithm (GA) computing an...

متن کامل

Using a Financial Training Criterion Rather than a Prediction Criterion

The application of this work is to decision making with financial time series, using learning algorithms. The traditional approach is to train a model using a prediction criterion, such as minimizing the squared error between predictions and actual values of a dependent variable, or maximizing the likelihood of a conditional model of the dependent variable. We find here with noisy time series t...

متن کامل

A general, prediction error-based criterion for selecting model complexity for high-dimensional survival models.

When fitting predictive survival models to high-dimensional data, an adequate criterion for selecting model complexity is needed to avoid overfitting. The complexity parameter is typically selected by the predictive partial log-likelihood (PLL) estimated via cross-validation. As an alternative criterion, we propose a relative version of the integrated prediction error curve (IPEC), which can be...

متن کامل

Prediction error criterion for selecting variables in a linear regression model

Several criteria, such as CV, C p, AIC, CAIC, and MAIC, are used for selecting variables in linear regression models. It might be noted that C p has been proposed as an estimator of the expected standardized prediction error, although the target risk function of CV might be regarded as the expected prediction error RPE. On the other hand, the target risk function of AIC, CAIC, and MAIC is the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Journal of Statistics

سال: 2012

ISSN: 2161-718X,2161-7198

DOI: 10.4236/ojs.2012.25061